A Globally Convergent LP-Newton Method

نویسندگان

  • Andreas Fischer
  • Markus Herrich
  • Alexey F. Izmailov
  • Mikhail V. Solodov
چکیده

We develop a globally convergent algorithm based on the LP-Newton method, which has been recently proposed for solving constrained equations, possibly nonsmooth and possibly with nonisolated solutions. The new algorithm makes use of linesearch for the natural merit function and preserves the strong local convergence properties of the original LP-Newton scheme. We also present computational experiments on a set of generalized Nash equilibrium problems, and a comparison of our approach with the previous hybrid globalization employing the potential reduction method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C Xxxxx Society for Industrial and Applied Mathematics a Globally Convergent Lp–newton Method *

We develop a globally convergent algorithm based on the LP-Newton method which has been recently proposed for solving constrained equations, possibly nonsmooth and possibly with nonisolated solutions. The new algorithm makes use of linesearch for the natural merit function, and preserves the strong local convergence properties of the original LP-Newton scheme. We also present computational expe...

متن کامل

A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points

The LP-Newton method for constrained equations, introduced some years ago, has powerful properties of local superlinear convergence, covering both possibly nonisolated solutions and possibly nonsmooth equation mappings. A related globally convergent algorithm, based on the LP-Newton subproblems and linesearch for the equation’s infinity-norm residual, has recently been developed. In the case of...

متن کامل

Piecewise Differentiable Minimization for Ill-posed Inverse Problems

Based on minimizing a piecewise differentiable lp function subject to a single inequality constraint, this paper discusses algorithms for a discretized regularization problem for ill-posed inverse problems. We examine computational challenges of solving this regularization problem. Possible minimization algorithms such as the steepest descent method, iteratively weighted least squares (IRLS) me...

متن کامل

Globally Convergent Newton Algorithms for Blind Decorrelation

This paper presents novel Newton algorithms for the blind adaptive decorrelation of real and complex processes. They are globally convergent and exhibit an interesting relationship with the natural gradient algorithm for blind decorrelation and the Goodall learning rule. Indeed, we show that these two later algorithms can be obtained from their Newton decorrelation versions when an exact matrix...

متن کامل

A uniform approximation method to solve absolute value equation

In this paper, we propose a parametric uniform approximation method to solve NP-hard absolute value equations. For this, we uniformly approximate absolute value in such a way that the nonsmooth absolute value equation can be formulated as a smooth nonlinear equation. By solving the parametric smooth nonlinear equation using Newton method, for a decreasing sequence of parameters, we can get the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016